The Discrete Fourier Transform, Part 3: The PSD

نویسنده

  • Douglas Lyon
چکیده

This paper is part 3 in a series of papers about the Discrete Fourier Transform (DFT) and the Inverse Discrete Fourier Transform (IDFT). The focus of this paper is on computing the Power Spectral Density (PSD) of the FFT (Fast Fourier Transform) and the IFFT (Inverse Fast Fourier Transform). The implementation is based on a well-known algorithm, called the decimation in time Radix 2 FFT, and requires that its' input data be an integral power of two in length. This paper demonstrates the computation of the PSD and applications of the DFT and IDFT. The applications include filtering, windowing, pitch shifting and the spectral analysis of re-sampling.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Discrete Fourier Transform, Part 1

This paper describes an implementation of the Discrete Fourier Transform (DFT) and the Inverse Discrete Fourier Transform (IDFT). We show how the computation of the DFT and IDFT may be performed in Java and show why such operations are typically considered slow. This is a multi-part paper, in part 2, we discuss a speed up of the DFT and IDFT using a class of algorithms known as the FFT (Fast Fo...

متن کامل

The Discrete Fourier Transform, Part 2: Radix 2 FFT

This paper is part 2 in a series of papers about the Discrete Fourier Transform (DFT) and the Inverse Discrete Fourier Transform (IDFT). The focus of this paper is on a fast implementation of the DFT, called the FFT (Fast Fourier Transform) and the IFFT (Inverse Fast Fourier Transform). The implementation is based on a well-known algorithm, called the Radix 2 FFT, and requires that its' input d...

متن کامل

A general construction of Reed-Solomon codes based on generalized discrete Fourier transform

In this paper, we employ the concept of the Generalized Discrete Fourier Transform, which in turn relies on the Hasse derivative of polynomials, to give a general construction of Reed-Solomon codes over Galois fields of characteristic not necessarily co-prime with the length of the code. The constructed linear codes  enjoy nice algebraic properties just as the classic one.

متن کامل

Efficient Spectral Analysis of Quasi Stationary Time Series

Power Spectral Density (PSD) of quasi-stationary processes can be efficiently estimated using the short time Fourier series (STFT). In this paper, an algorithm has been proposed that computes the PSD of quasi-stationary process efficiently using offline autoregressive model order estimation algorithm, recursive parameter estimation technique and modified sliding window discrete Fourier Transfor...

متن کامل

Detection of high impedance faults in distribution networks using Discrete Fourier Transform

In this paper, a new method for extracting dynamic properties for High Impedance Fault (HIF) detection using discrete Fourier transform (DFT) is proposed. Unlike conventional methods that use features extracted from data windows after fault to detect high impedance fault, in the proposed method, using the disturbance detection algorithm in the network, the normalized changes of the selected fea...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of Object Technology

دوره 8  شماره 

صفحات  -

تاریخ انتشار 2009